Results Module#
The results module contains components for generating and analyzing results.
Results processing module for EMFieldML.
This module provides functionality for processing and analyzing results from electromagnetic field machine learning models.
- class EMFieldML.Results.Results.ResultMaker#
Bases:
objectClass for processing and analyzing ML model results.
- static pre_deviation(input_path_y_data: Path, input_path_model: Path, x_train_data: numpy.ndarray, test_data_list: list[int])#
Calculate deviation statistics for test data using trained model.
- static pre_magneticfield(input_path_y_data: Path, input_path_model: Path, x_train_data: numpy.ndarray, x_test_data: numpy.ndarray, y_test_data: numpy.ndarray, test_data_list: list[int])#
Calculate magnetic field predictions and statistics for test data.
- static make_N_change_deviation(prediction_point_num: int)#
Calculate deviation changes for different N values.
- static make_N_change_error(prediction_point_num: int)#
Calculate error changes for different N values.
- static sort_N_change_data()#
Sort N change data by deviation values.
- static cross_validation_pattern()#
Generate cross-validation patterns for model evaluation.
- static make_fix_prediction_point()#
Create fixed prediction points for analysis.
- static sort_list(input_path_dir: Path, input_path_file: str, output_path: Path)#
Sort a list of data by the first element of each sublist.
- static check_time(file_path)#
Check and parse time information from file.
- static measure_simulation_time()#
Measure and record simulation execution time.
Graph generation and visualization module for EMFieldML results.
- class EMFieldML.Results.Graph.GraphMaker#
Bases:
objectClass for generating various graphs and visualizations of EMFieldML results.
- static active_learning_map(input_path: Path, n_data: int)#
Generate active learning map visualization.
- static error_map(input_path: Path, type_error: str, vmax: float, cmap: str = 'Reds')#
Generate error map visualization.
- static magnitude_map_efficiency(postprocessing: float)#
Generate magnitude map with efficiency analysis.
- static magnitude_map_magnetic(postprocessing: int)#
Generate magnitude map with magnetic field analysis.
- static change_emfield_by_roi_and_movement(aimpoint, vmax, vmin, relative_move=False)#
Change EM field by ROI and movement analysis.
- static change_efficiency_by_roi_and_movement() None#
Change efficiency by ROI and movement analysis.
- static search_near_point(aimpoint, points, constraints)#
Search for nearest point with constraints.
- static check_search_point(aimpoint, searchpoint, constraints)#
Check if search point meets constraints.
- static generate_mycmap()#
Generate custom colormap for visualizations.
Magnitude map generation for electromagnetic field visualization.
This module provides functionality to create magnitude maps and generate training data for electromagnetic field prediction models.
- class EMFieldML.Results.MagnitudeMapMaker.MakeYData#
Bases:
objectGenerate Y-data for magnitude map creation and training data preparation.
- static make_ferrite_parameter()#
Generate ferrite parameter data for magnitude map creation.
- static make_prediction_point()#
Generate prediction points for magnitude map visualization.
Test data generation for electromagnetic field models.
This module provides functionality to generate test coordinates and validation data for electromagnetic field prediction models.